$$
\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) \quad \lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)
$$

Algebraic limit laws:

$$
\lim _{x \rightarrow a}[f(x) \times g(x)]=\lim _{x \rightarrow a} f(x) \times \lim _{x \rightarrow a} g(x)
$$

$$
\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}
$$

$$
\lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x)
$$

Topic 9: Calculus Option			Improper Integrals			
The Fundamental Theorem of Calculus states if $\boldsymbol{f}(\boldsymbol{x})$ is continuous on $[\boldsymbol{a}, \boldsymbol{b}]$ where:			The p-series states for:$\int_{1}^{\infty} \frac{1}{x^{p}} d x$		Converges if $p>1$	
$F(x)=\int_{a}^{x} f(t) d t \quad a \leq x \leq b$	then	$F^{\prime}(x)=f(x)$			Dive	if $p \leq 1$
And for any function where $\boldsymbol{g}(\boldsymbol{x})$ such that $\boldsymbol{F}^{\prime}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})$			$\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$			$\int_{a}^{b}=-\int_{b}$
$\int_{a}^{b} f(x) d x=F(b)-F(a)$		here $F(x)$ is the derivative of $f(x)$				
Integrals in the form $\int_{\boldsymbol{a}}^{\infty} \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{d x}$ are known as improper integrals Improper integrals are either convergent or divergent:			Convergent when $\int_{a}^{\infty} f(x) d x=0$ or finite value			
			Divergent when $\int_{a}^{\infty} f(x) d x= \pm \infty$			
When integrating improper integrals, use $\lim _{\boldsymbol{t} \rightarrow \infty}$ and replace ∞ with \boldsymbol{t}				$\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x=$		
The Comparison Test for improper Integrals states:	If $0 \leq f(x) \leq g(x)$ for all $x \geq a$ then:					
	$\int_{a}^{\infty} f(x) d x$ is convergent if $\int_{a}^{\infty} g(x) d x$ is convergent					
	$\int_{a}^{\infty} g(x) d x$ is divergent if $\int_{a}^{\infty} f(x) d x$ is divergent					
The Rienmann Sum states:	or a decreasing function $f(x)$ for all $x>a$, then there is an upper and lower sum such that:			$\sum_{k=a+1}^{\infty} f(k)<\int_{a}^{\infty} f(x) d x<\sum_{k=a}^{\infty} f(k)$		
	For an increasing function $g(x)$ for all $x>$ a, then there is an upper and lower sum such that:			$\sum_{k=a}^{\infty} g(k)<\int_{a}^{\infty} g(x) d x<\sum_{k=a+1}^{\infty} g(k)$		

Topic 9: Calculus Option					Series Part 1			
A series consists of $a_{1}+a_{2}+a_{3} \ldots$			$\sum_{n=1}^{\infty} a_{n}=S$			$\sum_{k=1}^{\infty} a_{k}=S_{n}$		
It is denoted by:			For a total sum			For a partial sum		
The Divergence Test states:			If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or does not exist then $\sum a_{n}$ diverges					
			If $\lim _{n \rightarrow \infty} a_{n}=0$ then $\sum a_{n}$ may converge or may diverge					
Key series types:	Geometric Infinite Series:$\sum_{n=1}^{\infty} a r^{n-1}$		Converges if $\|r\|<1$			Diverges if $\|r\| \geq 1$		
			Sum of infinite geometric series:			$=\frac{a}{1-r}$		
	Telescoping Series: Partial Fractions		Find S_{n} equation		Simplify S_{n}		Take $\lim _{n \rightarrow \infty} S_{n}$	
	P-Series: $\frac{1}{n^{p}}$ (Harmonic Series: $\frac{1}{n}$)		Converges if $p>1$					
			Diverges if $p \leq 1$					
The Comparison Test states given for two series of positive terms:			If $a_{n} \leq b_{n}$ for all of n and $\sum b_{n}$ converges, then $\sum a_{n}$ also converges					
			If $a_{n} \geq b_{n}$ for all of n and $\sum b_{n}$ diverges, then $\sum a_{n}$ also diverges					
Steps:			1. Check if positive ($0 \leq a_{n}$)					
			2. Find b_{n} (b_{n} generally is a_{n} take away a useless term)					
			3. Determine whether b_{n} is smaller or larger than a_{n}					
			3. Find if b_{n} is convergent or divergent					
The Limit Comparison Test States:			If $\sum \frac{a_{n}}{b_{n}}$ exists and a_{n} and b_{n} are positive to use limit comparison test:			Then both series either converges of diverges		
			Steps:	1. Find b_{n} (b_{n} generally is a_{n} take away a useless term)				
			2. Find if a_{n} and b_{n} are positive and if $\sum \frac{a_{n}}{b_{n}}$ exists					
The Integral Test states for $\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{a}_{\boldsymbol{n}}$, if				then		$\sum_{n=1} a_{n}$	$\int_{n=1}^{\infty} f(x) d x$	Will both converge or diverge
Positive	Decreasing	Continuous	1. Check criteria: If it's positive decreasing and continuous			2. Then integrate a_{n}		

The Alternating Series Test states for:

$$
\sum_{n=1}^{\infty}(-1)^{n} a_{n}
$$

if $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ and $\left|a_{n+1}\right|<\left|a_{n}\right|$, then the series will converge

The Absolute Converge states: For $\sum a_{n}$, if $\sum\left|a_{n}\right|=$ $\left|a_{1}\right|+\left|a_{2}\right|+\cdots$ is convergent, then $\sum a_{n}$ is absolutely convergent

Use if series is not always positive, or not alternating, or when dealing with trig

1. Write $\sum a_{n}$ as $\sum\left|a_{n}\right|$

Note:

Absolute convergence, is stronger than convergence
If a series is absolute convergent, it must be convergent
Conditional convergence is when series converges, but is not absolutely convergent

1. $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1, \sum a_{n}$ is absolutely convergent
2. $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|>1, \sum a_{n}$ is divergent
3. $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1, \sum a_{n}$ is inconclusive
