Topic 9: Calculus Option						Limits of Sequences and Functions						
	$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$)	$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$					
Algebraic limit laws:	$\lim_{x \to a} [f(x) \times g(x)] = \lim_{x \to a} f(x) \times \lim_{x \to a} g(x)$)	$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$					
					$\lim_{x \to a}$	$\left[cf(x) \right]$	$f(x)] = c \lim_{x \to a} f(x)$					
L'Hopital's rule states if the following occurs:												
$\lim_{x\to a}\frac{f(x)}{g(x)}$	$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0} \qquad \text{or} \qquad \qquad \lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\pm \infty}{\pm \infty}$			$\frac{\alpha}{\alpha}$		$\frac{1}{0^-} = -\infty \qquad \frac{1}{0} =$		= Undefined	$\frac{1}{0^+} = \infty$			
	e top and bottom n separately		li x	$\max_{x \to a} \frac{f(x)}{g(x)} L$	$\int_{a}^{t} H \lim_{x \to a} \frac{f'}{g'}$	$\frac{(x)}{(x)}$		$\frac{1}{\infty} = 0$	88	$\frac{\infty}{\infty} = Undefined$ $\frac{0}{0} = Undefined$		
The Squeeze Theorem states if: Use when involving trigonometric functions					tions			A closed Interval interval [a, b] Notation: includes end points		An open interval (<i>a, b</i>) excludes end points		
g(x)	$g(x) \le f(x) \le h(x)$ and $\lim_{x \to a} g(x) = \lim_{x \to a} h(x)$				h(x) =	A function is continuous at $x = a$ when:						
Then:		$\lim_{x \to a} f(x) = L \qquad \qquad$						$f(x) = \lim_{x \to a} f(x) =$	$\lim_{x\to a^+}f(x)$			
1	The Absolute Valu	ie Theo	orem sta	tes:		if $\lim_{n \to \infty} a_n = 0$, then $\lim_{n \to \infty} a_n = 0$						
					$f(x)$ must be continuous at x_0							
A fu	nction is differen	tiable a	at a poir	nt x_0 if:		$f(x)$ must not have a "sharp point" at x_0						
	the tangent to $f(x)$ at x_0 must be vertice						vertical					
	The de							be found if th able at that po		it exists by:		
$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$ or					or		$f'(x_0) = \lim_{h \to 0} \frac{f(x) - f(x_0)}{x - x_0}$					
Delle/e Theese		f(x	;) is con	tinuous o	n [<i>a, b</i>]	NA 14 1				ntinuous on [a, b]		
	ditions: and from the given		f(x) is differential on (a, b)			requires th a and b are fo		alue Theorem hree conditions: found from the given		f(x) is differentiable on $]a, b[$		
int	terval	f(a)=f(b)				interval				$c \in]a, b[$		
If three conditions are met then there must be a point $m{c}$ such that $m{f}'(m{c}) = m{0}$: c such	If these conditions are met, then there exists a point c such that: $f'(c) = \frac{f(b) - f(a)}{b - a}$							

Topic 9: Calculu	I	Improper Integrals						
The Fundamental Theorem of Calcult on $[m{a},m{b}]$ wh	if $f(x)$ is continuous	The p-series states for: $\int_{0}^{\infty} 1$		Converges if $p > 1$				
$F(x) = \int_a^x f(t) dt a \le x \le b$	then $F'(x) = f(x)$			$\int_{1}^{\infty} \frac{1}{x^{p}} dx$	Diverges if $p \leq 1$			
And for any function where $oldsymbol{g}(oldsymbol{x})$	hat $F'(x) = f(x)$	$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx = \int_{a$						
$\int_a^b f(x) dx = F(b) - F(a)$		Where $F(x)$ is the ntiderivative of $f(x)$	$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx \qquad \int_{a}^{b} = -\int_{b}^{a}$					
Integrals in the form $\int_a^\infty f(x)dx$ are	known	as improper integrals	Convergent when $\int_{a}^{\infty} f(x) dx = 0$ or finite value					
Improper integrals are either co	nt or divergent:	Divergent when $\int_a^{\infty} f(x) dx = \pm \infty$						
When integrating improper integrals, use $\lim_{t o\infty}$ and replace ∞ wit				h t $\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx =$				
	If $0 \le f(x) \le g(x)$ for all $x \ge a$ then:							
The Comparison Test for improper Integrals states:	$\int_a^{\infty} f(x) dx$ is convergent if $\int_a^{\infty} g(x) dx$ is convergent							
	$\int_a^\infty g(x) dx$ is divergent if $\int_a^\infty f(x) dx$ is divergent							
The Rienmann Sum states:	or a decreasing function $f(x)$ for a then there is an upper and lower that:							
The Richmann Sum states.	For an increasing fund <i>a</i> , then there is an u such		• •	$ x > \sum_{k=a}^{\infty} g(k) $	$\sum_{k=a}^{\infty} g(k) < \int_{a}^{\infty} g(x) dx < \sum_{k=a+1}^{\infty} g(k)$			

	Series Part 1									
A series consists of $a_1 + a_2 + a_3$			$\sum_{n=1}^{\infty} a_n = S$		$\sum_{k=1}^{\infty} a_k = S_n$					
It is denoted by:			For a total sum				For a partial sum			
		If $\lim_{n \to \infty} a_n \neq 0$ or does not exist then $\sum a_n$ diverges								
The Divergence Test states:			If $\lim_{n o \infty} a_n = 0$ then $\sum a_n$ may converge or may diverge							
	Geometric Infinite Series:		Converges if $ r < 1$			Diverges if $ r \ge 1$				
	$\sum_{n=1}^{\infty}$	ar^{n-1}	Sum of ir	nfinite geome	te geometric series:		=	$=\frac{a}{1-r}$		
Key series types:	relescoping series.		Find	S_n equation	ion Simplify S _n			Take $\lim_{n \to \infty} S_n$		
	P-Ser	P-Series: $\frac{1}{n^p}$		Converges if $p > 1$						
	(Harmon	ic Series: $\frac{1}{n}$)	Diverges if $p \leq 1$							
The Comparis	The Comparison Test states given for two			If $a_n \leq b_n$ for all of n and $\sum b_n$ converges, then $\sum a_n$ also converges						
serie	s of positive te	rms:		If $a_n \ge b_n$ for	or all of n and	Ill of n and $\sum b_n$ diverges, then $\sum a_n$ also diverges				
			1. Check if positive ($0 \le a_n$)							
	Steps:		2. Find b_n (b_n generally is a_n take away a useless term)							
	Steps.		3. Determine whether b_n is smaller or larger than a_n							
					3. Find if b_n is convergent or divergent					
				If $\sum \frac{a_n}{b_n}$ exists and a_n and b_n are positive to use limit comparison test:			Then both series either converges of diverges			
The Limit	The Limit Comparison Test States:		1. Find b_n (b_n ge			generall	enerally is a_n take away a useless term)			
			Steps: 2. Find if a_n and b_n are positive and if $\sum \frac{a_n}{b_n}$ exist				$\frac{n}{n}$ exists			
The Integral 1	The Integral Test states for $f(n)=a_n$, if		the	then			$\int_{n=1}^{\infty} f(x)dx$	x	Will both converge or diverge	
Positive	Decreasing	Continuous	1. Check criteria: If it's positive decreasing and continuous2. Then integrate a_n				tegrate a_n			

Topic 9: Calculus Optior	ı	Series Part 2					
The Alternating Series Test states for: $\sum_{n=1}^{\infty}(-1)^na_n$	if $\lim_{n \to \infty} a_n $	if $\lim_{n \to \infty} a_n = 0$ and $ a_{n+1} < a_n $, then the series will converge					
If: $\sum a_n$ converges, then $\lim_{n \to \infty} S_n = S$ However, if n does not approach ∞ then the Error of a Sum can be found:		e Absolute Converge states: For $\sum a_n$, if $\sum a_n = positive$, + $ a_2 + \cdots$ is convergent, then $\sum a_n$ is absolutely convergent dealing w					
	1. Write $\sum a_n$ as $\sum a_n $						
For alternative series only:		Note:					
$ R_n = S - S_n \le a_{n+1}$	Absolute convergence, is stronger than convergence						
$ Error \le a_{n+1} $	If a series is absolute convergent, it must be convergent						
$a_{n+1} \leq error\ specified$	Conditional converge	conditional convergence is when series converges, but is not absolutely convergent					
		1. $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right < 1$, $\sum a_n$ is absolutely convergent					
The ratio test stages if: Don't need to use divergent test for ratio te	est 2. $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right > 1, \sum a_n$ is divergent						
	3. $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 1, \sum a_n$ is inconclusive						