Topic 2: Functions and Equations					Polyn		
The Remainder Theorem states:				The Factor Theorem states:			
If a polynomial $f(x)$ is divided by $x-k$, then remainder $=f(k)$				A polynomial $f(x)$ has a factor $(x-k)$ if and only if:$f(k)=0$			
Polynomial function: Factors, Roots, Zeros$y=x^{2}+2 x-15$	Factors are: $(x+5)$ and $(x-3)$		The line of symmetry of $y=a x^{2}+b x-c$ is: $x=\frac{-b}{2 a}$ also be used to find turning point of quadratic by plugging x				
	X-Intercepts are at: -5 or -3		The number of solutions of a quadratic equation depends on the value of the discriminant:		$\Delta=b^{2}-4 a c$		
	Roots/S	$x=5$ or 3			$\begin{gathered} \Delta>0 \\ 2 \text { Real } \\ \text { distinct } \\ \text { solutions } \end{gathered}$	$\Delta=0$ One Real Solution	$\Delta<0$ No real solutions
Topic 2: Functions and Equations				The Theory of Functions			
Function: A set of ordered pairs in which every x -value has a unique y -value.							
In order to be a function, the graph of an equation must pass the vertical and horizontal line test							
The Vertical Line Test States:		A relation is a function if a vertical line intersects the graph of a relation at only one point,					
The Horizontal Line Test States:		A function is a one-to-one function if a horizontal line crosses the graph once Otherwise, it is a many-to-one function					
Rationale Functions are a ratio of two polynomials:	Asymptote \& intercepts of a rational function:	Vertical Asymptote: $V A=-\frac{d}{c}$ (where y is impossible, thus denominator $=0$)					
		Horizontal Asymptote: HA		$\operatorname{deg}($ num $)=\operatorname{deg}($ den $) \rightarrow$		$=\frac{a}{c}(\text { substitute } \infty \text { for } x)$	
				$\operatorname{deg}($ num $)<\operatorname{deg}($ den $) \rightarrow$		$=0$	
				$\operatorname{deg}($ num $)>\operatorname{deg}($ den $) \rightarrow$		= none	
$f(x)=\frac{a x+b}{c x+d}$		X-intercept: $x=-\frac{b}{a}($ where $y=0)$					
		Y-intercept: $y=\frac{b}{d}$ (where $x=0$)					
Interval Notation		Set Builder Notation		A function is odd when: $f(-x)=-f(x)$			
		$\{x \mid x>0$ $\uparrow \uparrow$		A function is even when: $f(-x)=f(x)$			
		Inverse functions:$f^{-1}(x)$	Reflection of $f(x)$ on the line $y=x$				
		Swaps domain and range of $f(x)$					
		$f\left(f^{-1}(x)\right)=f(x)$					

