Topic 2: Functions and Equations						Polynomials				
The Remainder Theorem states:						The Factor Theorem states:				
If a polynomial $f(x)$ is divided by $x - k$, then						A polynomial $f(x)$ has a factor $(x - k)$ if and only if :				
remainder = f(k)						f(k) = 0				
	Factors are: $(x + 5)$ and $(x - 3)$				The line of symmetry of $y = ax^2 + bx - c$ is: $x = \frac{-b}{2a}$					
Polynomial function: Factors, Roots, Zeros $y = x^2 + 2x - 15$	Zeros are: -5 and 3				This can also be used to find turning point of quadratic by plugging x					
	X-Intercepts are at: $-5 \text{ or } -3$				The n	e number of ns of a quadratic ion depends on value of the scriminant:	$\Delta = b^2 - 4ac$			
	Roc	Roots/Solutions are: $x = 5$ or 3					Δ> 0 2 Real distinct solutions	$\Delta = 0$ One Real Solution	∆< 0 No real solutions	
Topic 2: Functions and Equations						The Theory of Functions				
Function: A set of ordered pairs in which every x-value has a unique y-value.										
In order to be a function, the graph of an equation must pass the vertical and horizontal line test										
The Vertical Line Test States: A relation is a function if a vertical line intersects the graph of a relation at only one point,								one point,		
The Horizontal Line T		A function is a one-to-one function if a horizontal line crosses the graph once Otherwise, it is a many-to-one function								
Rationale Functions are a ratio of two polynomials:				Vertical Asymptote: $VA = -\frac{d}{c}$ (where y is impossible, thus denominator = 0)						
		Asymptote & intercepts of a rational function:		Horizontal Asymptote: <i>HA</i>	d	$\deg(\text{num}) = \deg(\text{den}) \rightarrow \qquad = \frac{a}{c} (\text{substitute} \ \infty$		$e \infty$ for x)		
	As				d	$\deg(num) < \deg(den) \rightarrow$		= 0		
	ratic				d	$\deg(num) > \deg(den) \rightarrow$		= none		
$f(x) = \frac{ax+b}{cx+d}$				X-intercept: $x = -\frac{b}{a}$ (where $y = 0$)						
				Y-intercept: $y = \frac{b}{d}$ (where $x = 0$)						
Interval Notation			Set Builder Notation			A function is odd when: $f(-x) = -f(x)$				
[0, 20] [()] Include 0 Not 0 Not 20 Include 20			{ x x>0 }			A function is even when: $f(-x) = f(x)$				
						Inverse functions: $f^{-1}(x)$	Reflection of $f(x)$ on the line $y = x$			
		the set of all × such		uch that x is greater than ze	n In		Swaps domain and range of $f(x)$			
						, , ,	$f(f^{-1}(x)) = f(x)$			

	Topic 2: Functions and Equations	Transformations of Graphs						
	y = f(x - h) shifts $y = f(x)$ to the right by h units							
Shifts	y = f(x + h) shifts $y = f(x)$ to the left by h units							
	y = f(x) + k shifts $y = f(x)$ up by h units							
	y = f(x) - k shifts $y = f(x)$ down by h units							
Doflocti	y = f(-x) reflects $y = f(x)$ across the y-axis							
Reflectio	y = -f(x) reflects $y = f(x)$ across the x-axis							
	If $a > 1$, transformation is a stretch	If $a < 1$, transformation is a compress						
Stretches	$y = f(ax)$ stretches/compresses $y = f(x)$ horizontally, by $\frac{1}{a}$							
	y = af(x) stretches/compresses $y = f(x)$ vertically, by a							
	f(x)	Turns all x values positive						
Moduli	us $f(x)$	Reflects the graph to the right of the y-axis in the y-axis Ignore the left hand side part of the graph						
	Zeros of $f(x)$ (when they exist) are the vertical asymptot	otes of $\frac{1}{f(x)}$ Zeros of $\frac{1}{f(x)}$ are the vertical asymptotes of $f(x)$						
	If <i>c</i> the y-intercept of $f(x)$, then $\frac{1}{c}$ is the y-intercept of $\frac{1}{f(x)}$							
$\frac{1}{f(x)}$	The minimum value of $f(x)$ is the maximum of $rac{1}{f(x)}$	The minimum value of $\frac{1}{f(x)}$ is the maximum of $f(x)$						
	When $f(x) > 0$, $\frac{1}{f(x)} > 0$	When $f(x) < 0$, $\frac{1}{f(x)} < 0$						
	When $f(x)$ approaches 0, $\frac{1}{f(x)}$ will approach $\pm \infty$	When $f(x)$ approaches $\pm \infty$, $\frac{1}{f(x)}$ approaches 0						