A sequence is a set of terms which follow a rule (pattern)

$$
u_{1}, u_{2}, u_{3}, \ldots, u_{n-1}, u_{n}
$$

Arithmetic Progression: Terms differ by a common difference, \boldsymbol{d}	$u_{1}+u_{2}+u_{3}+\cdots+u_{n-1}+u_{n}$			
$\boldsymbol{d}=\boldsymbol{u}_{\boldsymbol{n}}-\boldsymbol{u}_{n-1}$	$c-b=b-a$	$u_{1}=a$	$u_{2}=a+d$	$u_{3}=a+2 d$
Sum of arithmetic progression	$S_{n}=\frac{n}{2}\left(u_{1}+u_{n}\right)$	$S_{n}=\frac{n}{2}(2 a+(n-1)+d)$		

Geometric Progression: Terms differ by a common ratio, r

$$
u_{1} \times u_{2} \times u_{3} \times \ldots \times u_{n-1} \times u_{n}
$$

$$
\begin{array}{l|l|l|l}
\boldsymbol{r}=\frac{\boldsymbol{u}_{n+1}}{\boldsymbol{u}_{\boldsymbol{n}}} & \frac{b}{a}=\frac{a}{c} & u_{1}=a & u_{2}=a r \\
u_{3}=a r^{2} \quad u_{n}=a r^{n-1}
\end{array}
$$

$$
S_{n}=\frac{u_{1}\left(1-r^{n}\right)}{1-r}
$$

Sum of infinite geometric progression

$$
S_{n}=\frac{u_{1}}{1-r}
$$

Topic 1: Algebra				Exponents and Logarithms			
Exponent (Index) Laws:				Logarithm Laws: $b=a^{x} \Leftrightarrow x=\log _{a} b$			
$a^{n} \times a^{m}=a^{n+m}$		$a^{n} \div a^{m}=\frac{a^{n}}{a^{m}}=a^{n-m}$		$\log _{a} x+\log _{a} x=\log _{a} x y$		$\log _{a} x+\log _{a} x=\log _{a} \frac{x}{y}$	
$a^{\frac{m}{n}}=\sqrt[n]{a^{m}}$ or $(\sqrt[n]{a})^{m}$		$a^{1}=a$	$a^{0}=1$	$\log _{a} x^{n}=\operatorname{nlog}_{a} x$		$\log _{a} 1=0$	$\log _{a} a=1$
$\left(a^{x}\right)^{y}=a^{x y}$	$(a b)^{x}=a^{x} b^{x}$	$a^{x}=a^{y}$	$a^{-x}=\frac{1}{a^{x}}$	$\log _{a} a^{r}=r$	$a^{\log _{a} x}=x$	$\log _{a} x=\log _{a} y$	$\log _{e} x=\ln x$
		$x=y$		$\log _{a}(0)=$ undefined		$x=y$	$\log (-x)=0$

