Topic 1: Algebra					Sequences and Series						
A sequence is a set of terms which follow a rule (pattern)					$u_1, u_2, u_3, \dots, u_{n-1}, u_n$						
Arithmetic Progression: Terms differ by a common difference, d				d	$u_1 + u_2 + u_3 + \dots + u_{n-1} + u_n$						
$d = u_n - u_{n-1}$		c-b=b-a		$u_1 = a$	$u_2 = a$	u + d u	$_{3} = a + 2d$	$u_n = a + (n-1)d$			
Sum of arithmetic progression			$S_n =$	$\frac{n}{2}(u_1+u_n)$	$u_1 + u_n$) S			$S_n = \frac{n}{2}(2a + (n-1) + d)$			
Geometric Progression: Terms differ by a common ratio, r					$u_1 \times u_2 \times u_3 \times \times u_{n-1} \times u_n$						
$r = \frac{u_{n+1}}{u_n}$ $\frac{b}{a} =$		$\frac{a}{c}$	$u_1 = a$	$u_2 = a$	$u_2 = ar$ u_2		$u_3 = ar^2$		$u_n = ar^{n-1}$		
Sum of geometri	ic progression	S _n	$=\frac{u_1(1-r^n)}{1-r}$	Sum of infi	Sum of infinite geometric pro			n $S_n = \frac{u_1}{1-r}$			
Topic 1: Algebra					Exponents and Logarithms						
	Exponent (Ir	ndex) Laws:			Logarithm Laws: $b = a^x \Leftrightarrow x = \log_a b$						
$a^n \times a^m = a^{n+m}$		$a^n \div a$	$a^m = \frac{a^n}{a^m} = a^{n-m}$	$\log_a x + \log_a x$	$\log_a x + \log_a x = \log_a xy$			$\log_a x + \log_a x = \log_a \frac{x}{y}$			
$a^{\frac{m}{n}} = \sqrt[n]{a^m} or \left(\sqrt[n]{a}\right)^m$		$a^1 = a^1$	$a^{0} = 1$	$\log_a x^n$	$n = n \log_a x$		$\log_a 1 =$	0	$\log_a a = 1$		
$(a^x)^y = a^{xy}$	$(\boldsymbol{a}^{x})^{y} = \boldsymbol{a}^{xy} (ab)^{x} = a^{x}b^{x}$		$a^{-x} = \frac{1}{a^x}$	$\log_a a^r = a$ $\log_a(0) =$			$\log_a x = \log_a y$ $x = y$		$\log_e x = \ln x$ $\log(-x) = 0$		
Graphs of				Cha	inge of B	ase Form	ula				
exponential function and e^x	tions 20		/ /		$x = \frac{\log_c b}{\log_c a} = \frac{\ln b}{\ln a}$			$\log_a b = \frac{1}{\log_b a}$			
No stationary points 15		$y = 4^{x}$ $y = e^{x}$ $y = 2^{x}$			Graphs of logarithms						
Always positive 10					$ \begin{array}{c} \mathbf{y} \\ 4 \\ \mathbf{x} = 0 \\ 3 \\ 1$						
Always increasing 5 y-axis is HA					2- 1- log(X)						
No VA		$\begin{array}{c c} 1 \\ \hline \\ 1 \\ \hline \\ 1 \\ \hline \\ 3 \\ \hline \\ x \\ \end{array}$			$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
One-to-one	2				-3- -4-						

Т	Induction								
1. Test		Let $n = 1$		E			nsure <i>LHS</i> = <i>RHS</i>		
2. Assume		Assume true for n =		= <i>k</i> Sı			bstitute k for n in statement		
3. Prove		Let $n = k + 1$		Substitute part of $n = k + 1$ with				with $n = k$	
4. Explain		Since statement is true for $n = k$, then it is also true for $n = k + 1$ The proposition is true for $n = 1$ and							
Т	Complex Numbers								
There are two	types of complex	of complex numbers		i ³	= <i>-i</i>	i ⁴ =	= 1	$i^{5} = i$	
polar form	mod-arg form		Modulus (<i>r</i>): The distance from the origin			$r = z = \sqrt{a^2 + b^2}$			
z = a + bi	$z = r(\cos\theta + i\sin\theta) = r(cis)$		Argument ($ heta$): the angle is subtended from the real axis			$\theta = \tan^{-1} \frac{b}{a}$			
Т	Permutations and Combinations								
×: AND		+:	OR		-: EXCLUDING				
Permutations (pick) To pick r objects out o distinct objects is:		${}^{n}P_{r} = \frac{n!}{(n-r)!}$		Combinations (choose): To choose r objects out of r distinct objects (order not important) is:		${}^{n}C_{r} = \frac{n!}{r! (n-r)!} = \binom{n}{r}$			
Т	Sum and Product of Roots								
Formula of Quadratic: $x^2 - (lpha + eta)x + lphaeta$ or $x^2 - S_N x + P_N$									
	S _N	$S_N = \alpha + \beta = -\frac{b}{a}$ $P_N = \alpha\beta = \frac{c}{a}$		$S_N = \alpha + \beta = -\frac{a_{n-1}}{a_n} = -\frac{second}{first}$					
For a quadratic equation				$P_N = a$ $= \frac{las}{firs}$	$\alpha\beta = \frac{(-1)}{a_{f}}$			nber: Negative Imber: Positive	